

Development of Australia's National Action List for offshore CCS

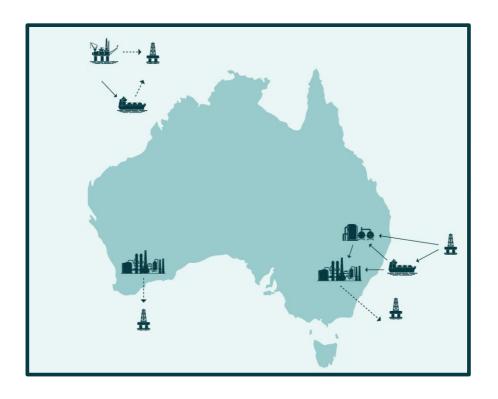
London Protocol Science Day 18 April 2024

Presenters

Heather Agnew

Director, Sea Dumping
Department of Climate Change,
Energy, the Environment and Water

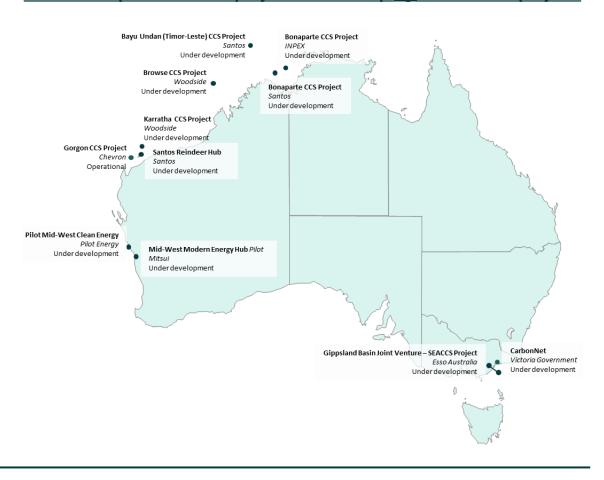
Dr Andrew Ross


Sr. Principal Research Scientist Commonwealth Scientific and Industrial Research Organisation

Dr Linda Stalker

Sr. Principal Research Scientist Commonwealth Scientific and Industrial Research Organisation

Presentation outline

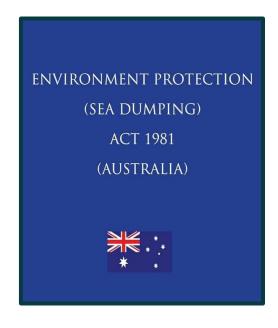

- Snapshot: CCS in Australia
- Australian context
- Australia's National Action List
- CSIRO technical development of the National Action List
- Looking forward National Action List

Snapshot: CCS in Australia

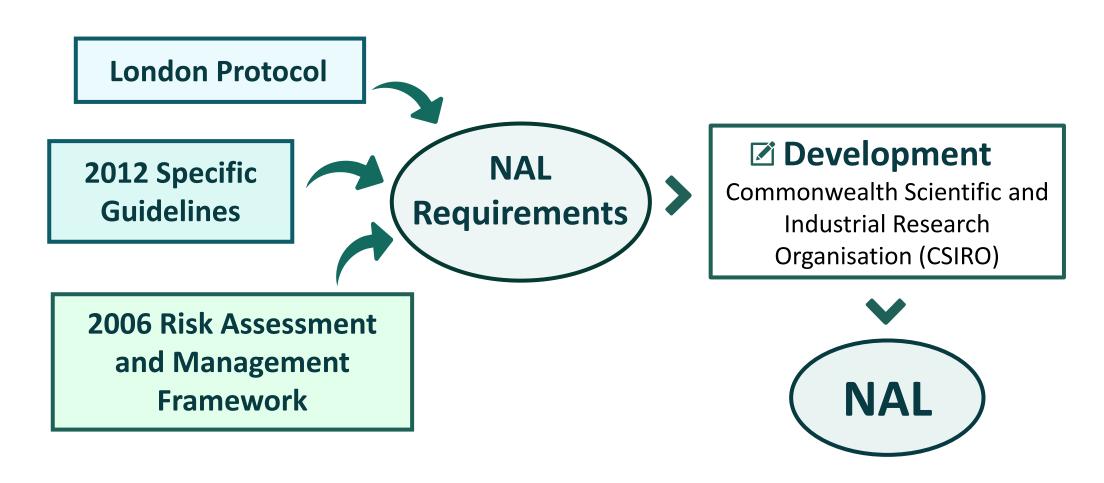
Australia's basins ranked for CO₂ storage potential (National Carbon Mapping and Infrastructure Plan, 2009, Figure 18)

Australia's operational CCS project and developing offshore CCS projects

Australian context


International Agreements

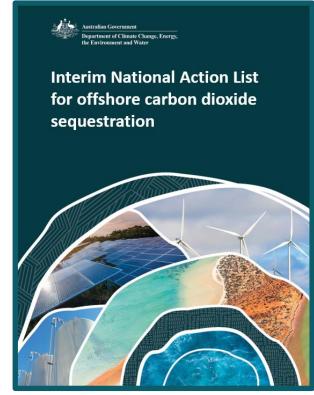
The London Protocol


National Law

- Environment Protection (Sea Dumping)
 Act 1981
- Environment Protection and Biodiversity Conservation Act 1999
- Offshore Petroleum and Greenhouse Gas Storage Act 2006

National Action List (NAL) requirements

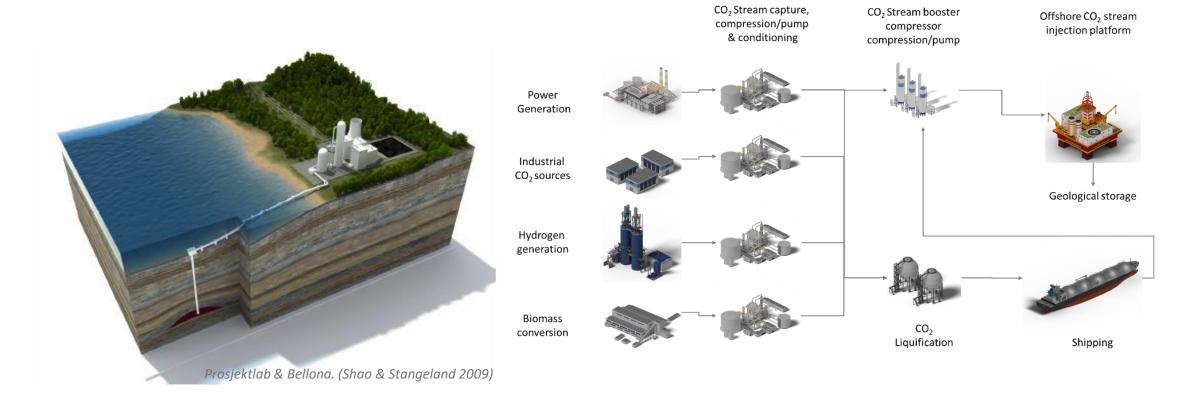
Australia's National Action List


Interim NAL for CCS

- sets out a list of specified substances for which the waste would need to be screened
- sets an upper-limit threshold for each substance
- is available on our department's website www.dcceew.gov.au

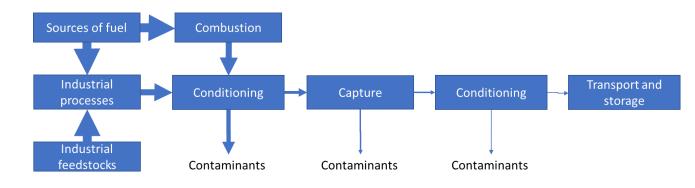
NAL for CCS

- may specify a lower-level substance concentration, below which there is little concern
- consider more types of capture scenarios



Cover – Interim National Action List for offshore carbon dioxide sequestration

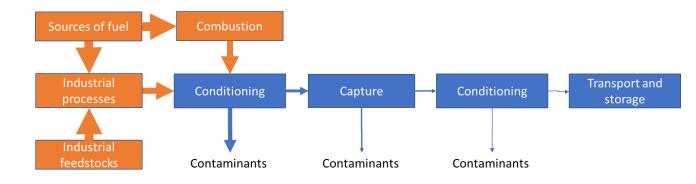
Carbon Capture and Storage Value Chain



Traditional CCS concept

Current concepts

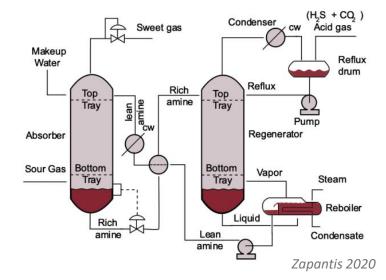
Defining upper-limits for the Interim NAL

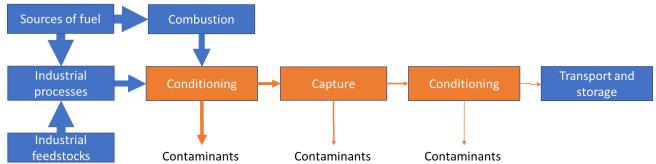

- Tracking CO₂ and Incidental Associated Substances through the value chain
- Benchmarking against ISO transport standards and CCS project CO₂ specifications
- Comparison with Human Health Short Term Exposure Limits (STELs)
- Measurement
- Interim NAL construction

Tracking Incidental Associated Substances

Combustion and industrial processes CO₂ streams

- Australian energy and industry focus
- Combustion
 - Coal, gas biomass and waste
- Industrial processes
 - Cement/lime
 - Metal smelters
 - Chemicals
 - Ammonia and fertiliser production


Tracking Incidental Associated Substances


CO₂ capture and conditioning

- Preconditioning
 - Removal of compounds such as NO_x SO_x Hg
- Amine-based CO₂ capture
- Postconditioning
 - Dehydration, amine removal

Incidental Associated Substances are removed during capture and conditioning

Collated CO₂ contaminants from industrial sectors flue gas and CO₂ product streams

Tracking Incidental Associated Substances

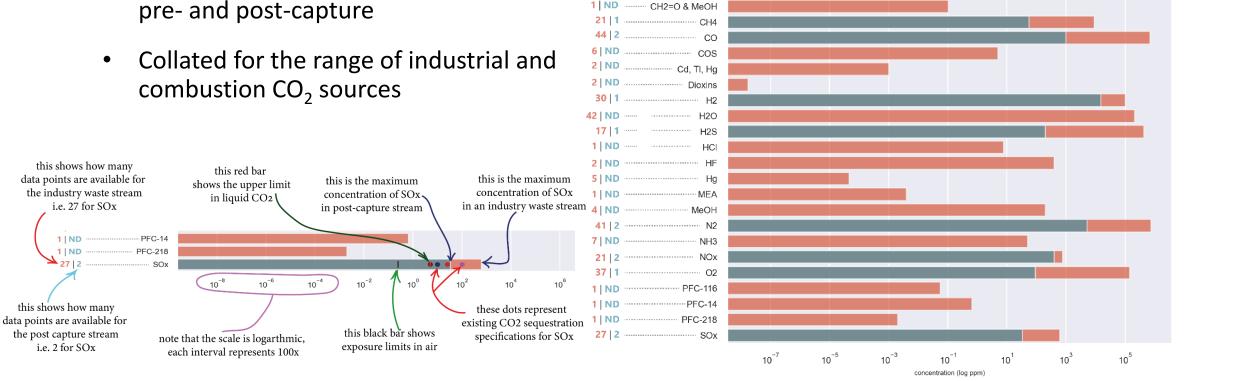
Concentrations of impurities in dried CO₂

- Concentrations of Incidental Associated Substances in dried CO₂ (post capture and purification)
- Ranges of Incidental Associated Substance concentrations in CO₂ streams

Constituent	Concentration	s from combustion of	Concentrations	from combustion of		
Constituent	thermal coal (9		gas (%)			
Caulana Diamida		(6)	· · · · ·			
Carbon Dioxide	98.84 – 99.97		98.78 – 99.97			
(CO ₂)						
Carbon	0.001 - 0.04	(10 – 400 ppm)	<dl -="" 0.0050<="" th=""><th>(<dl -="" 50="" ppm)<="" th=""></dl></th></dl>	(<dl -="" 50="" ppm)<="" th=""></dl>		
Monoxide (CO)						
Nitrogen (N ₂)	0.01 – 0.9	(100 – 9,000 ppm)	0.01 - 0.9	(100 – 9,000 ppm)		
Argon (Ar)	0.01 - 0.15	(100 – 1,500 ppm)	0.01 - 0.15	(100 – 1,500 ppm)		
Oxygen (O ₂)	0.01 - 0.03	(100 – 300 ppm)	0.01 - 0.03	(100 – 300 ppm)		
Sulphur Dioxide	0.001 - 0.01	(10 - 100 ppm)	0.001 - 0.01	(10 – 100 ppm)		
(SO ₂)						
Nitrogen Oxides	<dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl -="" 100="" ppm)<="" th=""></dl></th></dl></th></dl></th></dl>	(<dl 100="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl -="" 100="" ppm)<="" th=""></dl></th></dl></th></dl>	<dl -="" 0.01<="" th=""><th>(<dl -="" 100="" ppm)<="" th=""></dl></th></dl>	(<dl -="" 100="" ppm)<="" th=""></dl>		
(NO _x)						
Hydrogen (H ₂)	<dl 0.002<="" th="" –=""><th>(<dl 20="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""></dl></th></dl></th></dl></th></dl>	(<dl 20="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""></dl></th></dl></th></dl>	<dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""></dl></th></dl>	(<dl 100="" ppm)<="" th="" –=""></dl>		
Hydrogen	<dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl -="" 100="" ppm)<="" th=""></dl></th></dl></th></dl></th></dl>	(<dl 100="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl -="" 100="" ppm)<="" th=""></dl></th></dl></th></dl>	<dl -="" 0.01<="" th=""><th>(<dl -="" 100="" ppm)<="" th=""></dl></th></dl>	(<dl -="" 100="" ppm)<="" th=""></dl>		
Sulphide (H ₂ S)						
Water (H₂O)	0.001 - 0.06	(10 – 600 ppm)	0.001 - 0.06	(10 – 600 ppm)		
Methane (CH ₄)	<dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""></dl></th></dl></th></dl></th></dl>	(<dl 100="" ppm)<="" th="" –=""><th><dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""></dl></th></dl></th></dl>	<dl -="" 0.01<="" th=""><th>(<dl 100="" ppm)<="" th="" –=""></dl></th></dl>	(<dl 100="" ppm)<="" th="" –=""></dl>		
Ammonia (NH ₃)	<dl -="" 0.005<="" th=""><th>(<dl 50="" ppm)<="" th="" –=""><th><dl -="" 0.005<="" th=""><th>(<dl 50="" ppm)<="" th="" –=""></dl></th></dl></th></dl></th></dl>	(<dl 50="" ppm)<="" th="" –=""><th><dl -="" 0.005<="" th=""><th>(<dl 50="" ppm)<="" th="" –=""></dl></th></dl></th></dl>	<dl -="" 0.005<="" th=""><th>(<dl 50="" ppm)<="" th="" –=""></dl></th></dl>	(<dl 50="" ppm)<="" th="" –=""></dl>		
Methanol	<dl -="" 0.02<="" th=""><th>(<dl 200="" ppm)<="" th="" –=""><th><dl -="" 0.02<="" th=""><th>(<dl 200="" ppm)<="" th="" –=""></dl></th></dl></th></dl></th></dl>	(<dl 200="" ppm)<="" th="" –=""><th><dl -="" 0.02<="" th=""><th>(<dl 200="" ppm)<="" th="" –=""></dl></th></dl></th></dl>	<dl -="" 0.02<="" th=""><th>(<dl 200="" ppm)<="" th="" –=""></dl></th></dl>	(<dl 200="" ppm)<="" th="" –=""></dl>		
(CH₃OH)						

Sourced from Wang et al., 2011a; Metz et al., 2005

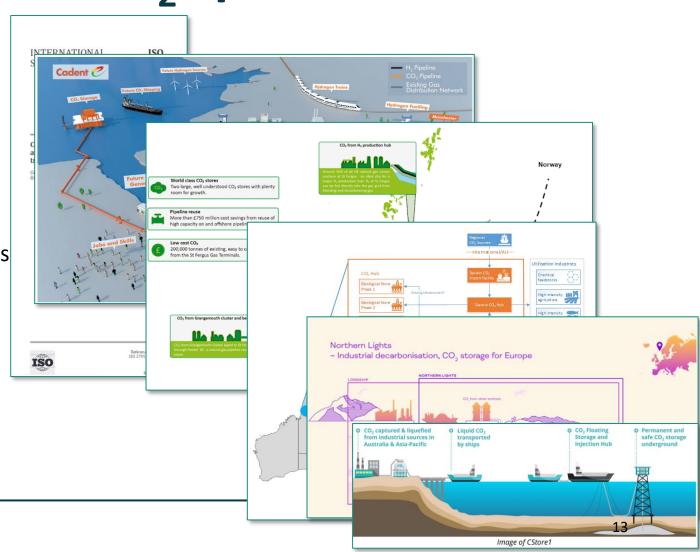
DL indicates 'lower than detection limit' of analytical method used for determination, this does not however mean that the compounds are not present.


Composition from industries pre- and post-capture

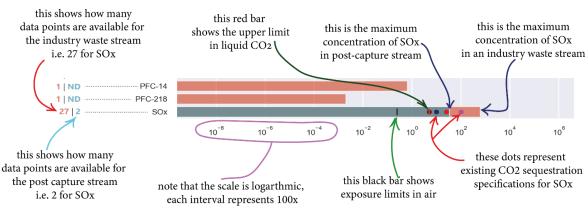
26 | 2 Ar

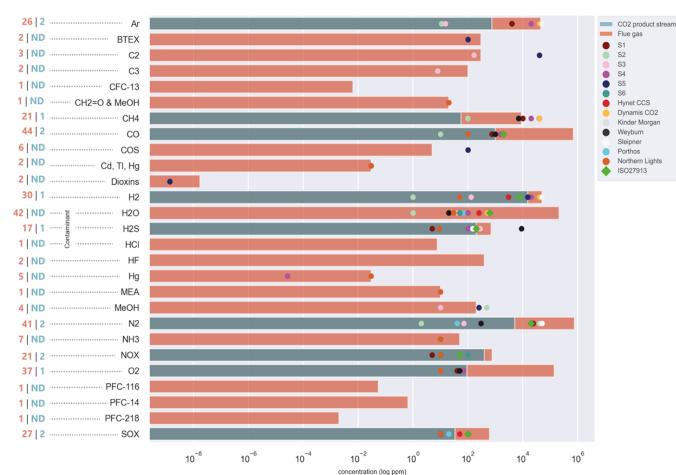
2 | ND BTEX

1 | ND CFC-13


 Concentration ranges of Incidental Associated Substances in CO₂ streams pre- and post-capture

Industry waste stream
Post capture waste stream


Benchmarking against CO₂ specifications


- ISO 27913
- CCS projects
 - Sleipner
 - Hynet
 - Weyburn
 - Acorn and related Scottish cluster projects
 - Northern Territory low emission hub
 - Northern Lights
 - Porthos Project
 - DeepC Store

Capture and CO₂ specifications comparison

- Comparison of CO₂ stream pre and post capture with CO₂ specifications
- Shows many specifications are in line with expected post capture composition
- However there are exceptions

Short Term Exposure Limits (STELs)

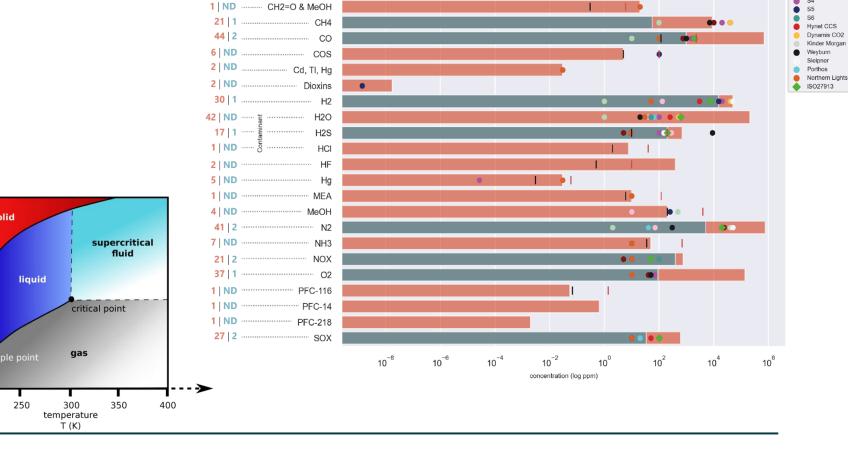
3 | ND C2

1 | ND CFC-13

Assessing the risk of CO₂ stream contaminants

10,000 -

1,000 •


10

200

- Contaminant toxicity
- Pathway to harm
- Risks to workers
- Risks to the environment

Use of screening levels

CO2 product stream

Measurement

Review of CO₂ stream monitoring approaches

- Inline measurement methods
- Offline measurement methods
 - Mobile methods and instruments
 - Laboratory based techniques

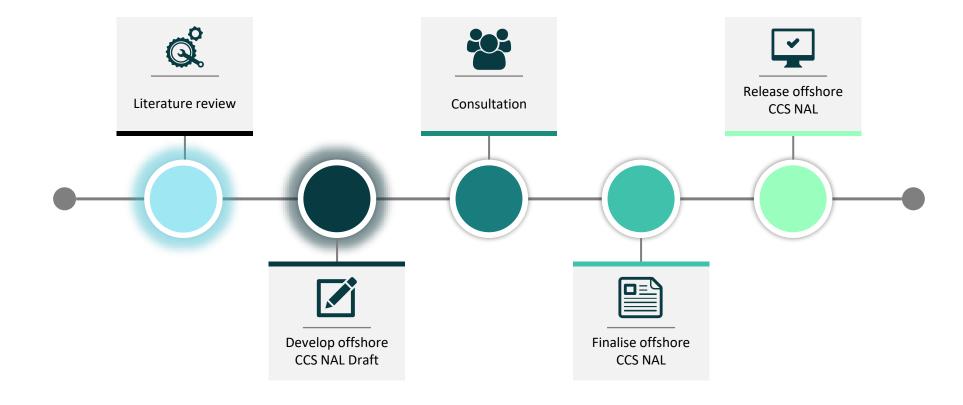
Further method development required

	Online Methods and Instrumentation			Mobile Methods and Instrumentation			Laboratory Based Techniques					
Contaminant	Instrument Type	Supplier	Lower Limit	Method	Instrument Type	Supplier	Lower Limit	Method	Instrument Type	Supplier	Lower Limit	Method
	Online subsampling; UV absorbance / UV Fluorescence	Various	0.1 µg/m ³	Relevant Standard: ISO 6978-2:2003 (Detection in Natural Gas Streams)	78-2:2003 (Detection in Natural Gas Streams) Portable Mercury Analyser Ion - MVI USEPA Method IO 3.3: etermination of Metals	r Ion - MVI	0.1 ug/m ³	Developing a Multi- Metals, Fence-Line Monitoring Plan for	Ultraviolet Atomic Fluorescence (UV AF), ultraviolet atomic absorption (UV AA), X-ray Fluorescence (XRF)	Various	0.1µg/dscm (dry standard cubic metre)	USEPA Method 30B
Mercury	Viercury								Atomic Absoprtion Sepctrophotometry (AAS)	Various	Dependent on spectrophotomer	USEPA Method 102
	Multi-Metal CEMS	SCI SailBri Cooper Inc - Xact 640	0.09 ng/m ³	USEPA Method IO 3.3: Determination of Metals in Ambient PM Using XRF			Fugitive Emissions Using X- Ray Based Monitors	Cold Vapour Atomic Absorption Spectroscopy (CVAAS)	Various	0.56 µg/m ³ estimated, instrument dependent	USEPA Method 29	
Arsenic (Arsine)	Multi-Metal CEMS	SCI SailBri Cooper Inc - Xact 640	0.06 ng/m ³	USEPA Method IO 3.3: Determination of Metals in Ambient PM Using XRF	Portable Gas Detector	Oldham - BM25	1 ppm	USEPA Method 29: Metals Emissions from Stationary Sources	AAS		10 ug/ml	USEPA Method 108 Particulate and Gaseous Arsenic Emissions
	Multi-Metal CEMS	SCI SailBri Cooper Inc - Xact 640	1.2 ug/m ³	USEPA Method IO 3.3: Determination of Metals in Ambient PM Using XRF	Continuous Particulate Monitor + X-Ray Fluorescence	Horiba - PX-375 analyser	11.3 ng/m ³	USEPA Method IO 3.3: Determination of Metals in Ambient PM Using XRF	AAS		0.5 ug/m ³	USEPA Method 29
Cadmium	Multi-Metal CEMS	ELS - AeroLead 3000	0.05 ug/m ³	USEPA Method IO 3.3: Determination of Metals in Ambient PM Using XRF				10000				EN 14385
Atmospheric Heavy Metals Analyser	aric Heavy Metals FPI - AMMS-100 () 5 ur/m ³	USEPA Method IO 3.3: Determination of Metals	Multi-Metal CEMS	SCI SailBri Cooper Inc - Xact 625i	52 ng/m ³	USEPA Method IO 3.3: Determination of Metals in Ambient PM Using XRF	ICP-MS		OSHA Method 1006			
	Analyser	Analyser FPI - AMMS-100		in Ambient PM Using XRF					ICP-OES			OSHA Method ID125G
			I A SOUTH OUT A						Electrochemical Trace Metal Analyser	CI Scientific - Ionix		

Interim NAL

- CO₂ Streams for storage to comprise
 >95% CO₂
- STELs with safety factor included used to define upper limits of Incidental Associated Substances
- Incidental Associated Substances without STELs are included that relate to:
 - Infrastructure integrity
 - Subsurface reactivity
 - Efficiency

Adjustments will occur where required for offshore CCS NAL release



Upper Limit	Rationale for Limit	
2,000 ppm	 Health and safety aspects Engineering with respect to mitigation of stress cracking of steels due to carbide formation 	
100 ppm	Health and safety aspects	
200 ppm	Health and safety aspects Engineering with respect to mitigation of stress cracking of steels due to hydride formation	
40 ppm	 Health and safety aspects Engineering with respect to mitigating metal corrosion Environmental with concerns about dissolution of carbonate minerals, especially in sub-surface rock formations or well-bore cements due to acidic nature of HCl in water (forms hydrochloric acid) 	
10 ppm	 Health and safety aspects Engineering with respect to mitigating metal corrosion Environmental with concerns about dissolution of carbonate or silicate-rich minerals, especially in sub-surface rock formations or well-bore cements due to acidic nature of HF in water (forms hydrofluoric acid) 	
4,000 ppm	Health and safety aspects	
700 ppm	 Health and safety aspects Engineering with respect to mitigation of stress cracking of steels due to hydride formation and corrosion of copper- based alloys 	
4 ppm	 Health and safety aspects Engineering with respect to mitigating metal corrosion Environmental with concerns about dissolution of carbonate minerals, especially in sub-surface rock formations or well-bore cements due to acidic nature of NO_x in water (forms nitrous and nitric acids) Microbiological with respect to any nitrites and nitrates (formed by the acid reaction) acting as electron acceptors in the anaerobic sub-surface formations with multi-step reductions to nitrous oxide (N₂O, small amounts) and nitrogen (N₂, main product) 	
	2,000 ppm 100 ppm 200 ppm 40 ppm 10 ppm 4,000 ppm 700 ppm	

Looking forward – National Action List

Department of Climate Change, Energy, the Environment and Water

Department of Climate Change, Energy, the Environment and Water

Contact us

Heather Agnew
Director, Sea Dumping
heather.agnew@dcceew.gov.au

Dr Andrew RossSenior Principal Research Scientist andrew.ross@csiro.au

Dr Linda Stalker Senior Principal Research Scientist linda.stalker@csiro.au

Interim National Action List

Department website

dcceew gov.au